Evidence-Specific Structures for Rich Tractable CRFs
نویسندگان
چکیده
We present a simple and effective approach to learning tractable conditional random fields with structure that depends on the evidence. Our approach retains the advantages of tractable discriminative models, namely efficient exact inference and arbitrarily accurate parameter learning in polynomial time. At the same time, our algorithm does not suffer a large expressive power penalty inherent to fixed tractable structures. On real-life relational datasets, our approach matches or exceeds state of the art accuracy of the dense models, and at the same time provides an order of magnitude speedup.
منابع مشابه
rCRF: Recursive Belief Estimation over CRFs in RGB-D Activity Videos
For assistive robots, anticipating the future actions of humans is an essential task. This requires modelling both the evolution of the activities over time and the rich relationships between humans and the objects. Since the future activities of humans are quite ambiguous, robots need to assess all the future possibilities in order to choose an appropriate action. Therefore, a successful antic...
متن کاملConditional Random Fields via Univariate Exponential Families
Conditional random fields, which model the distribution of a multivariate response conditioned on a set of covariates using undirected graphs, are widely used in a variety of multivariate prediction applications. Popular instances of this class of models, such as categorical-discrete CRFs, Ising CRFs, and conditional Gaussian based CRFs, are not well suited to the varied types of response varia...
متن کاملApplying Conditional Random Fields to Chinese Shallow Parsing
Chinese shallow parsing is a difficult, important and widely-studied sequence modeling problem. CRFs are new discriminative sequential models which may incorporate many rich features. This paper shows how conditional random fields (CRFs) can be efficiently applied to Chinese shallow parsing. We employ using CRFs and HMMs on a same data set. Our results confirm that CRFs improve the performance ...
متن کاملProtein-protein interaction site prediction based on conditional random fields
MOTIVATION We are motivated by the fast-growing number of protein structures in the Protein Data Bank with necessary information for prediction of protein-protein interaction sites to develop methods for identification of residues participating in protein-protein interactions. We would like to compare conditional random fields (CRFs)-based method with conventional classification-based methods t...
متن کاملCollective Information Extraction with Context-Specific Consistencies
Conditional Random Fields (CRFs) have been widely used for information extraction from free texts as well as from semi-structured documents. Interesting entities in semi-structured domains are often consistently structured within a certain context or document. However, their actual compositions vary and are possibly inconsistent among different contexts. We present two collective information ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010